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Shear-flow stability within the atmosphere of Venus 
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Employing a linear stability analysis, Dudis (1 973) has recently suggested that 
shear-flow instability might exist within the upper stratosphere of Venus owing 
to destabilization by radiative transfer. We have incorporated a more realistic 
formulation for radiative transfer into his stability analysis and conclude that 
such an instability is unlikely. 

1. Introduction 
An extremely interesting stability analysis has recently been presented by 

Dudis (1973) for a stratified, thermally radiating, unbounded shear layer. He 
considers the destabilizing influence of radiative transfer, whereas the corre- 
sponding non-radiating stability criterion is given by 

Ri = (g/T) (dT /dz  + I')/X2 > a, (1) 

with Ri denoting the Richardson number, g the acceleration due to gravity, 
d T / d z  the vertical temperature gradient, I' the adiabatic lapse rate and S = du/dx 
the vertical velocity gradient. 

When radiative transfer is included, Dudis finds that the neutral-stability 
boundary can exhibit two maxima as illustrated in figure 1. One does not know 
a priori which of the two maxima dominates the stability problem; i.e. which 
of the two yields the larger Richardson number. The neutral-stability boundary 
and thus the values for Ri, and Ri, are shown by Dudis to depend upon the 
Reynolds number of the shear layer together with the dimensionless radiation 
paramekr 

G = v . qfpCpST', ( 2 )  

where q and T'represent perturbations to the radiative heat flux and temperature, 
respectively, while p denotes density and Cp the specific heat. 

Dudis considers several atmospheric examples, and by employing the optically 
thin limit for radiative transfer, he estimates that the critical Richardson 
number a t  the I00 km level within the atmosphere of Venus exceeds the actual 
Richardson number, inferring that shear-flow instability exists within the 
atmosphere of Venus. Such a conclusion has strong implications concerning our 
understanding of mixing processes within the atmosphere of Venus, and we feel 
that it is useful to examine this conclusion employing a more realistic model for 
radiative transfer. 
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Richardson number, Ri 
FIGURE 1. Illustrative neutral-stability boundary following Dudis (1973). 

2. Length-scale considerations 
As discussed by Dudis, his stability analysis in the non-radiating limit is 

equivalent to that of Maslowe & Thompson (1971), for which the static stability 
of the density stratification is expressed as 

h(z) E In [pO/p(z)] = ( L / H )  tanh (x/L), (3) 
where, as will be discussed shortly, L is the length scale of the shear layer, while 
po denotes a reference density. For a hydrostatic atmosphere, on the other hand, 
h(z )  = gz/RT, with R denoting the gas constant, and at  least for z/L < I, this 
is equivalent to (3) provided that H is interpreted as the scale height of the 
atmosphere; i.e. H = RT/g. 

The length scale L which appears in Dudis’ hyperbolic-tangent mean velocity 
profile is a length scale characteristic of the shear layer. It is difficult to choose 
a value for L. Dudis considers rather small values (200m), but the interpretation 
of the Soviet Venera 7 data by Ainsworth & Herman (1972), admittedly referring 
to levels within the atmosphere of Venus lower than those considered here, 
implies a shear-layer thickness at least as great as the scale height, which is 
consistent with the arguments put forth by Gierasch, Goody & Stone (1970) for 
the vertical scale of fluid motions, as well as the analysis of Ramanathan (1973) 
concerning zonal flow within the stratosphere of Venus. We shall thus choose 
L = H ,  and further discussion on this point is given later. 

We shall furthermore make direct use of Dudis’ stability analysis, which 
employs the Boussinesq approximation. This is strictly valid only for motions 
whose vertical length scale is less than a scale height. But application of the 
Boussinesq approximation will tend to underestimate the static stability of the 
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atmosphere, producing an upper bound on the critical Richardson number, 
which is sufficient for present considerations. 

The final length scale pertains to radiation, radiative transport within the 
stratosphere being due to the 15pm fundamental band of CO,. Dudis, employing 
the previously mentioned small length scale L = 200 m for the shear layer, assumes 
that the shear layer is optically thin. He bases this assumption upon considera- 
tions of the Planck mean absorption coefficient, but this coefficient is extremely 
misleading with regard to the determination of optical thinness, since it con- 
stitutes a mean over the entire black-body spectrum. 

A realistic criterion for optically thin radiation requires that the individual 
rotational lines of the 15pm CO, band correspond to the weak-line limit, and 
from Cess & Tiwari (1972) this requires that 6 < 1 for Lorentz lines, wheret 

6 = & L ~ / ~ Y O A , ~ ,  (4) 
with yo, S,, A,, and d denoting, respectively, the mean line width per unit 
pressure, band intensity, bandwidth parameter and mean line spacing. 

From (3) ,  and for conditions appropriate to the stratosphere of Venus, we 
find that the weak-line (optically thin) requirement S < 1 corresponds to 
L < 0.01 cm, which is a most unrealistic restriction.1 Concerning a stability 
analysis, the length scale L must be associated with the vertical length scale 
of a temperature perturbation, and Dudis has shown that this corresponds 
roughly to the shear-layer thickness, or by previous arguments, t o  the scale 
height of the atmosphere. Clearly 6 9 1 for realistic shear layers, such that the 
strong-line limit applies (Cess & Ramanathan 1972) rather than the weak-line 
limit. In  the following section we present a radiation model which is appropriate 
for present purposes. 

Before proceeding, however, it  should be mentioned that quite often attempts 
are made to formulate analytically the radiative flux for a real gas by employing 
a modified grey-gas differential approximation as a device for interpolating 
between the optically thin and optically thick limits. But this is not valid for 
the problem at hand, since the optically thick limit does not exist for a vibration- 
rotation band (Cess, Mighdoll & Tiwari 1967), while the optically thin limit 
is not a relevant limit, and such a procedure in addition ignores the discrete line 
structure of the band. 

3. Radiative-transfer formulation 
As discussed by Cess & Ramanathan (1972), there exist, in addition to the 

strong-line limit, further asymptotic radiation limits, which are characterized 
by the strong-line parameter 

t = (3f%yoH/Aold) P2,  ( 5 )  
t This definition for S corresponds to a homogeneous layer of thickness L, and in an 

atmospheric context this implies that L < H .  For L = H ,  use of the Curtis-Godson approxi- 
mation replaces the 4 by 2 in the denominator of (4). 
1 At sufficiently low pressures the approach to optically thin radiation may involve 

Doppler broadening. The above arguments nevertheless suffice for order-of-magnitude 
considerations. 
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where P i s  atmospheric pressure, with 6 < 1 denoting the limit of non-overlapping 
lines and 6 9 1 the limit of overlapping lines. 

For present purposes we shall consider only the limit of non-overlapping lines, 
and for Lorentz lines this corresponds to the vicinity of the stratopause of Venus 
(Ramanathan & Cess 1974). In terms of the strong-line parameter, the divergence 
of the radiative flux q applicable in the limit of non-overlapping lines is obtained 
by letting 6 4 0 in equation (8) of Cess & Ramanathan (1972), such that 

where e,,(T) is Planck’s function a t  the wavenumber wi of the band centre, the 
subscript i 2 refers to the near infra-red solar absorption bands of CO,, CL is 
the planetary angle factor, ,u the cosine of the solar zenith angle and T, denotes 
the effective black-body temperature of the sun. 

The absence of exchange integrals in (6) is consistent with discussions by 
Rodgers & Walshaw (1966), Dickinson (1972) and Ramanathan & Cess (1974). 
The form of (6) illustrates that the limit of strong non-overlapping lines is 
mathematically equivalent to optically thin radiation. But the equivalent ‘mean 
absorption coefficient’ will be much less than the Planck mean owing to line 
saturation. Putting it another way, in the strong-line limit the central portions 
of the lines are opaque and do not contribute to radiative transfer, while the 
far wings of the lines are optically thin and thus do not involve exchange integrals. 

The radiative equilibrium temperature is determined from (6) by setting 
dq/d@ = 0. Denoting this temperature by T,, considering small departures from 
radiative equilibrium, employing Wien’s approximation to Planck’s function 
for e J T )  and assuming a hydrostatic atmosphere to describe P(z) in ( 5 ) ,  it  
readily follows from (6) that 

where 

At the stratopause of Venus (Dickinson 1972)’ T, = 158°K and H = 3-5bn1, 
while the 15pm band parameters are summarized by Cess & Ramanathan (1973). 
We thus find that r = 1.7 x 105s, and this is in excellent agreement with the 
result given by Dickinson (1972, figure 15) for the same altitude. Equation (8) 
illustrates that r is independent of pressure, and this is consistent with the 
statement of Goody & Belton (1967) concerning strong non-overlapping Lorentz 
lines. 

With the interpretation of r as a radiative response time, (7) is of precisely 
the same form as a radiative heating approximation which has seen much recent 
application (e.g. Gierasch 1970; Gierasch & Sagan 1971; Stone 1972). This is 
important, since it illustrates that the response-time approximation is indeed 
applicable to atmospheric regions for which the rotational lines are Lorentzian 
and non-overlapping. With regard to the present stability problem, it would be 
tempting to extend (7) to lower altitudes by employing Dickinson’s (1972) values 
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for I-. But Cess & Ramanathan (1973) have shown that, in the limit of over- 
lapping lines (.$ B l), (7) does not describe the local heating function as is 
necessary in a stability analysis. Instead (7) is useful only in a spatially averaged 
context. It would thus appear that for present purposes the application of (7)  
must be restricted to regions within the atmosphere for which the lines are 
non-overlapping; i.e. in the vicinity of the stratopause. 

4. Stability results 
Since the present radiative-transfer formulation is mathematically equivalent 

to the optically thin limit, we may employ directly the optically thin stability 
analysis of Dudis, but with a much smaller value for G which accounts for line 
saturation. With T' = T-T,, from (2) and ( 7 ) ,  G = 111-8. Following Dudis, we 
take the vertical shear to be S = 0.01 s-l. This value appears reasonable in the 
light of the interpretation of the Soviet Venera 7 data by Ainsworth & Herman 
(1972),  who give rS N 0.02 s-1 within the upper troposphere; if the shear flow is 
driven by diurnal heating, one would anticipate a smaller value of S at higher 
altitudes (Ramanathan 1973). With this value for S together with I- = 1.7 x 105s, 
then G = 6 x 

Consider now the evaluation of Ri, and Ri, appropriate to the upper strato- 
sphere of Venus. Dudis shows that, for G = 0.1, Ri, is increased only slightly from 
the non-radiating value of 8. Since the present value (G  = 6 x is more than 
two orders of magnitude less than G = 0.1, it  is reasonable to conclude that 

With regard to Ri,, we shall employ the double limit Glk, GRe --f co as treated 
by Dudis, where k is the dimensionless wavenumber of the disturbance and 
Re = SH2lv is the Reynolds number of the shear layer, v denoting the kinematic 
viscosity. We shall justify the use of this limit a posteriori. From Dudis 

as compared with G = 3.5 from Dudis. 

Ri, = t. 

Ri, = 0.53GRe*. ( 9 )  

Employing previous values, R e  = 2.5 x 107, and clearly GRe B 1. To determine 
whether Glk > 1, we need to estimate the value of k corresponding to Ri,. Dudis 
has tabulated k as a function of R e  for R Q 104. For higher Reynolds numbers 
we may invoke the additional limit R e  --f 00, but hold kRe finite, thus retaining 
the viscous terms. This is equivalent to setting k2 = 0 in equation (4.6) of Dudis, 
which shows that kRe  approaches a constant value for R e  -+ co. 

We have not attempted to solve the resulting stability equation. Instead, 
from Dudis' numerical values RikaG N 2.2 for IlRe -+ 0, so that from (9) kRe  2: 70 
for Re -+ 00, and we find that Glk II 200, justifying use of the Glk + co limit. 
Equation ( 9 )  in turn yields Ri, = 0.093. Since this is much less than Ri,, the 
critical Richardson number is Ri, = i. 

The above illustrates that radiative transfer will not play a significant role 
with regard to  shear-flow stability for conditions representative of the upper 
stratosphere of Venus. The actual Richardson number for S = 0.01 s-1 and 
dT/dz  = 0 is Ri = 4.9, and this is considerably greater than the critical value. 
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This conclusion remains unchanged even if we arbitrarily select a shear-layer 
length scale which is less than the atmospheric scale height. For example, 
taking L = 10m (L/H = 2.9 x 10-3 < l), 6 rz 105, so that the strong-line limit 
is still applicable, and if H is replaced by +L in (8) in accord with previous com- 
ments concerning Curtis-Godson scaling, then G = 0.008 while Re = 210. From 
Dudis’ results we again find that radiation will not significantly destabilize the 
shear flow. 

We conclude that the apparent vertical mixing within the atmosphere of 
Venus (Dudis 1973) does not originate from radiative destabilization of a shear 
flow, at  least within the framework of a linear stability analysis. Other possible 
explanations for vertical mixing have been proposed by Lindzen (1970), Matsuno 
(1970) and Hart (1972). 

We thank V. Ramanathan for his constructive discussions. This work was 
supported by the National Science Foundation through Grant I(036988. 

Note added in proof. Recently Dudis ( J .  Pluid Mech. vol. 64, 1974, p. 65) 
has reconsidered the problem of stability within the stratosphere of Venus, 
employing a modified grey-gas differential (or Milne-Eddington) approximation 
to account for exchange integrals, and incorporating line saturation by estimat- 
ing a response time from Goody & Belton (1967). While we disagree with this 
method for including exchange integrals, such exchange integrals are, as dis- 
cussed herein, of no consequence within the upper stratosphere of Venus, and 
consequently this more recent study by Dudis is qualitatively consistent with 
our present results. 
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